夹逼定理
设 f(x), g(x), h(x) 在 x_0 附近有定义, 且满足
f(x) \le g(x) \le h(x).
如果
\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = A,
那么
\lim_{x \to x_0} g(x) = A.
证明
任取 \varepsilon > 0, 由 \displaystyle \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = A, 有
\exists \delta_1 > 0, 0 < |x - x_0| < \delta_1, |f(x) - A| < \varepsilon \Rightarrow A - \varepsilon < f(x) < A + \varepsilon;
\exists \delta_2 > 0, 0 < |x - x_0| < \delta_2, |h(x) - A| < \varepsilon \Rightarrow A - \varepsilon < h(x) < A + \varepsilon.
取 \delta = \min \left\{ \delta_1, \delta_2 \right\}, 又因为 f(x) \le g(x) \le h(x), 所以当 0 < |x - x_0| < \delta 时
A - \varepsilon < f(x) \leq g(x) \leq h(x) < A + \varepsilon \Rightarrow |g(x) - A| < \varepsilon,
因此
\lim_{x \to x_0} g(x) = A.